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Abstract—In the present study, the authors investigated the influence of carbon and lipid sources on regional differences in liver trace
element (As, Cd, Cu, total Hg, Mn, Pb, Rb, Se, and Zn) concentrations measured in polar bears (Ursus maritimus) (n¼ 121) from 10
Alaskan, Canadian Arctic, and East Greenland subpopulations. Carbon and lipid sources were assessed using d13C in muscle tissue and
fatty acid (FA) profiles in subcutaneous adipose tissue as chemical tracers. A negative relationship between total Hg and d13C suggested
that polar bears feeding in areas with higher riverine inputs of terrestrial carbon accumulate more Hg than bears feeding in areas with
lower freshwater input. Mercury concentrations were also positively related to the FA 20:1n-9, which is biosynthesized in large amounts
in Calanus copepods. This result raises the hypothesis that Calanus glacialis are an important link in the uptake of Hg in the marine food
web and ultimately in polar bears. Unadjusted total Hg, Se, and As concentrations showed greater geographical variation among polar
bear subpopulations compared with concentrations adjusted for carbon and lipid sources. The Hg concentrations adjusted for carbon and
lipid sources in Bering–Chukchi Sea polar bear liver tissue remained the lowest among subpopulations. Based on these findings, the
authors suggest that carbon and lipid sources for polar bears should be taken into account when one is assessing spatial and temporal
trends of long-range transported trace elements. Environ. Toxicol. Chem. 2012;31:2739–2747. # 2012 SETAC
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INTRODUCTION

The polar bear (Ursus maritimus) is an apex predator of
circumpolar arctic marine ecosystems. Due to its trophic posi-
tion, the polar bear may be exposed and in some cases have
elevated levels of a wide variety of environmental contaminants
[1,2]. These contaminants include trace elements such as mer-
cury (Hg), but also essential (As, Cu, Mn, Se, and Zn) and
nonessential (Cd, Hg, Pb, and Rb) elements of both natural and
anthropogenic origin, many of which are toxic at elevated
concentrations [3]. Mercury and Cd have been detected at high
concentrations in species occupying the top of the arctic marine
food webs including polar bears [3–6]. Toxicological effects of
these trace element contaminants in the Arctic have been of
concern in species such as polar bears, seals, beluga whales
(Delphinapterus leucas), and bowhead whales (Balaena mys-
ticetus) [7–12]. Of the different chemical forms of Hg, the most
important from an environmental toxicology perspective is
methylmercury (MeHg). Methylmercury biomagnifies through
food chains, and more than 95% has been shown to be absorbed
from the diet in exposed mammals [13]. In recent years,
increasingly subtle but important biological effects have been
documented, including behavioral, neurochemical, hormonal,

and reproductive changes in predatory fish and wildlife exposed
to environmentally relevant levels of MeHg [14].

Trace element concentrations show wide geographical var-
iation among polar bear subpopulations. Studies published over
the last 25 years have documented the highest concentrations of
total Hg, Se, and As in polar bears from the Beaufort Sea and
lowest in southern and western Hudson Bay and the Chukchi–
Bering Sea [3,6,15–17]. In contrast, Cd concentrations in polar
bears and ringed seals generally increase from the western to
eastern Arctic [3,6,15–18]. Trace element concentrations in
arctic biota are influenced by physical factors including riverine
output and geology, as well as biological factors such as
underlying food web structures that are manifested in the diet
of higher trophic level wildlife [18–20]. The relative importance
of these underlying factors in modulating geographical differ-
ences in trace element concentrations in polar bears and other
marine mammals is not completely understood.

The food web length and diet composition of polar bears
are known to vary considerably among Arctic subpopulations
[21–23]. For example, polar bears feed predominantly on ringed
seals (Pusa hispida), but depending on the subpopulation,
bearded seals (Erignathus barbatus), harp seals (Phoca groen-
landica), harbor seals (Phoca vitulina), hooded seals (Cysto-
phora cristata), walruses (Odobenus rosmarus), narwhals
(Monodon monoceros), belugas, bowhead whales, and sperm
whales (Physeter macrocephalus) may also form part of their
diet [21,24]. It is, however, unclear how such trophic factors
may influence spatial variation in trace element levels.
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Chemical tracers, such as nitrogen and carbon stable isotope
(SI) ratios (d15N, d13C) and fatty acid (FA) composition, have
been used to elucidate trophic relationships and food web
structure [25,26]. For estimating relative trophic positions of
animals within a food web, d15N is frequently used, whereas
d13C delineates the major carbon sources of an organism, that is,
benthic/pelagic, marine/terrestrial, and freshwater/marine [25].
The FAs may be used to assess the individual diet composition
of animals [26]. In addition, transfer of energy from phyto-
plankton and zooplankton to top predators may be traced using
FAs [27], because characteristic FAs synthesized in primary
and secondary producers are transferred through food webs
[28]. Carbon and nitrogen SIs have become powerful tools to
study dietary exposure and biomagnification of persistent con-
taminants in marine ecosystems [29], whereas FA composition
has been used in contaminant studies only recently, including
studies of persistent organic pollutant variation among polar
bear subpopulations [23,30–32].

We recently reported that concentrations of major bioaccu-
mulative trace elements showed significant variation among
subpopulations of polar bears from Alaska to East Greenland
[3]. In the present study, we used SI and FA chemical tracers to
test the hypothesis that among these same polar bear subpo-
pulations, differences in trace concentrations of essential and
nonessential elements are affected by variations in carbon and
lipid sources. Before combining the information on trace ele-
ments and carbon and lipid sources, we investigated subpopu-
lation differences in carbon and lipid sources assessed using
d13C ratio values and fatty acid signatures, respectively.

MATERIALS AND METHODS

Sample collection and age estimation

Polar bear liver, muscle, and subcutaneous fat tissues were
collected from eight subpopulations in the Canadian Arctic,
as well as from the Alaska (Chukchi–Bering Sea) and East

Greenland subpopulations over the years 2005 to 2008 (Fig. 1,
Table 1). A vestigial premolar tooth was used to estimate the
age of the bears [33,34]. Detailed information on sampling and
biometric measurements has been comprehensively reported
elsewhere [34].

Trace element analysis and quality control

All trace element analysis of the present polar bear liver
samples was carried out at the National Wildlife Research
Centre, Environment Canada, Carleton University. Polar bear
liver samples were analyzed for As, Cd, Cu, total Hg, Mn, Rb,
Pb, Se, and Zn. We have thoroughly and recently described [3]
the analytical procedures and quality assurance and control
used for trace element determination in the liver samples (see
Supplemental Data). Briefly, total Hg, As, Cd, Cu, Mn, Pb, Rb,
Se, and Zn were determined in polar bear liver samples
using U.S. Environmental Protection Agency method 200.8
with modifications for biological samples. Concentrations of
total Hg were determined by DMA-80 Direct Mercury Analyzer
(Milestone), and other elements were determined by ELAN
9000 inductively coupled plasma mass spectrometry from
Perkin Elmer. Recoveries of total Hg for certified reference
materials varied between 83 and 111%. Average certified
reference material recoveries of other elements ranged from
81% for Cu to 104% for Se. Standard deviations between
duplicate results for random liver samples were from 1 to
11% for Hg, below 10% for Cd, Cu, Mn, Rb, Se, and Zn, from
1 to 19% for As, and from 1 to 14% for Pb.

Stable isotope and fatty acid analysis

Carbon source variation of individual polar bears was inves-
tigated using d13C ratio values. All carbon SI analyses were
carried out by the Environmental Isotope Laboratory, Univer-
sity of Waterloo (Waterloo, ON, Canada). We have described
the analytical procedures in comprehensive detail for all bears

Fig. 1. Polar bear subpopulation ranges throughout the circumpolar basin. Labeled subpopulations denote those examined in the present study: Bering-Chukchi
Sea (CB), southern Beaufort Sea (SB), northern Beaufort Sea (NB), Lancaster/Jones Sound (LJS), Gulf of Boothia (GB), western Hudson Bay (WHB), southern
Hudson Bay (SHB), Baffin Bay (BB), Davis Strait (DS), and East Greenland (EG). [Color figure can be seen in the online version of this article, available at
wileyonlinelibrary.com]
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in the present study [23]. For SI analysis, polar bear muscle
tissues were homogenized and lipids were removed and pre-
pared for analysis by standard protocols (e.g., Hebert et al. [35]).
Carbon SIs were determined with an elemental analyzer
coupled to a continuous flow isotope ratio mass spectrometer.
The SI results were generally corrected using carbon standards
International Atomic Energy Agency-CH6 (sugar), Environ-
mental Isotope Laboratory-72 (cellulose), and Environmental
Isotope Laboratory-32 (graphite). The error for clean ball-
milled standard material was �0.2%. Mean deviation of dupli-
cate SI analysis on 10% of the polar bear samples was 0.07%.
Carbon compositions were calculated based on Carlo Erba
Elemental Standards B2005, B2035, and B2036 with an error
of �1%. See Supplemental Data for more detail.

All FA analyses for the polar bear subcutaneous fat tissue
and quality control samples were carried out by the Organic
Contaminants Research Laboratory at the National Wildlife
Research Centre and are described elsewhere [23,30] (see
Supplemental Data). Extraction and analysis of FAs was from
10 to 20mg of inner adipose tissue of a collected polar bear
sample. The 5-a-cholestane was used as internal standard.
Extracted FAs were methylated via the Hilditch reagent to fatty
acid methyl esters (FAMEs). The FAMEs were determined by
gas chromatography–flame ionization detection, with quantifi-
cation against a Supelco, 37-component FAME external stand-
ard. Here, we report only on the dietary FAs, that is, those that
are incorporated relatively unchanged from prey to monogastric
predator adipose tissues [26] that were available for quantifi-
cation based on the external standard. Each FAME was calcu-
lated as the mass percentage of total dietary FAME. The 12 FAs
used in the present study included linoleic acid (18:2n-6),
g-linolenic acid (18:3n-6), cis-11-eicosenoic acid (20:1n-9),
a-linolenic acid (ALA; 18:3n-3), cis-11,14-eicosadienoic
acid (20:2n-6), cis-8,11,14-eicosatrienoic acid (20:3n-6),
erucic acid (22:1n-9), cis-11,14,17-eicosatrienoic acid (ETA;
20:3n-3), arachidonic acid (ARA; 20:4n-6), cis-5,8,11,14,17-
eicosapentaenoic acid (EPA; 20:5n-3), cis-7,10,13,16,19-doca-
sapentaenoic acid (DPA; 22:5n-3), and cis-4,7,10,13,16,19-
docasahexaenoic acid (DHA; 22:6n-3).

A blank, duplicate, and two reference materials, Great Lakes
herring gull (Larus argentatus) egg pool and the National
Institute of Standards and Technology pilot whale blubber
standard reference material 1945, were extracted with every
batch of 20 FA samples. Relative differences in duplicate
analyses of samples were on average 6 and 7%, respectively.
The relative standard deviation of dietary FAs averaged 6% for

the herring gull egg pool. The SRM1945 dietary FA values were
on average within 15% relative standard deviation of our
laboratory results from the 2007 National Institute of Standards
and Technology/National Oceanic and Atmospheric Adminis-
tration Interlaboratory Comparison Exercise Program for
Organic Contaminants in Marine Mammal Tissues. Recovery
of 5-a-chlolestane was 100� 10%. See Supplemental Data for
more details.

Data analysis

Statistical analysis were carried out using R Version 2.11.1
[36]. To investigate subpopulation differences in lipid sources,
FA composition was explored by correspondence analysis run
on the 12 FAs [37]. The FA indexes (FAind1 and FAind2) were
generated for further analysis from the first and second axis of a
correspondence analysis run on the 12 FAs. Sample scores were
plotted by subpopulation, sex, and season. Season refers to
autumn (October–November), winter (December–March), and
spring (April–May). Variation of carbon source using d13C as
a tracer, among polar bear subpopulations, was tested by an
analysis of variance. To explore whether the differences in trace
concentrations of essential and nonessential elements are
affected by variation in carbon and lipid sources, we visualized
the relationships between chemical tracers and trace element
concentrations using the multivariate redundancy analysis
(RDA) [38]. The analysis was made on R package ade4 and
based on the covariance matrix of centered log-transformed
trace element concentrations. Prior to analysis, the explanatory
measures of lipid and carbon source variation (FAind1, FA ind2,
d13C) were standardized. Age was also added as an explanatory
variable because preliminary analysis revealed significant rela-
tionships between age and trace element concentrations.
Because Pb was detected at concentrations close to the mini-
mum detection limit in 45% of the samples, it was excluded
from the final RDA to avoid variables associated with high
uncertainty dominating the ordination. The RDA model was
highly significant based on the Monte-Carlo permutation test
(1,000 replicates, RV coefficient 0.18, p¼ 0.001). Sample
scores were plotted by subpopulation, sex, and season. Corre-
lations based on ln-transformed data are shown in the text
as Pearson correlation coefficients (r) with 95% confidence
intervals.

We used linear models (multiple regressions) to quantify the
relationships between trace element concentrations and carbon
and lipid sources. In detail, we investigated the effect of SI and
FA values on the concentrations of individual trace elements,

Table 1. Subpopulation, number of individuals, age, and stable isotope ratio of carbona of polar bears investigated for the influence of dietary tracers, sex, and
age on trace element concentrations

Subpopulation No. (males:females) Median age (range) d13C�SDa

Alaska, Bering–Chukchi Sea (CB) 11 (7:4) 7.0 (2–22) �16.8� 0.3
Southern Beaufort Sea (SB) 10 (7:3) 9.0 (4–20) �19.1� 0.4
Northern Beaufort Sea (NB) 24 (17:7) 6.0 (3–24) �19.2� 0.6
Gulf of Boothia (GB) 6 (4:2) 8.5 (3–24) �17.5� 0.5
Lancaster/Jones Sound (LS) 12 (10:2) 6.0 (3–11) �17.6� 0.5
Southern Hudson Bay (SHB) 12 (8:4) 9.0 (3–22) �18.9� 0.3
Western Hudson Bay (WHB) 11 (8:3) 7.0 (3–29) �18.8� 0.6
Baffin Bay, N.E. Baffin Island (BB) 10 (7:3) 5.0 (2–10) �17.5� 0.6
Davis Strait, S.E. Baffin Island (DS) 5 (5:0) 4.0 (3–6) �16.6� 0.7
E. Greenland, Scoresbysund (EG) 20 (14:6) 6.5 (3–19) �18.7� 0.3
All females 34 7 (2–24) �18.6� 1.0
All males 87 7 (3–29) �18.2� 1.0

aMcKinney et al. [23].
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which were related to chemical tracers according to the RDA.
We selected the most parsimonious linear models explaining
the variance of trace element concentrations using likelihood
ratio tests. Full models, including lipid and carbon source
descriptors (d13C and FAind1, FAind2), sex, and age as explan-
atory variables, were simplified by eliminating interaction terms
and variables if their removal did not result in a significant
increase in deviance. Throughout the analysis, diagnostic plots
of residuals were used to verify that the linear model assump-
tions were met, that is, most importantly, constant variance
between residuals. The trace element concentrations were ln-
transformed to meet model assumptions. The analytical diag-
nostics revealed one outlier in the model for As concentrations,
and removal of the outlier did not affect the significance of the
results. Parameter estimates (b) with 95% confidence intervals
are given in the text.

Furthermore, we investigated whether polar bear subpopu-
lation differences in trace element concentrations are affected
by variation in the carbon and lipid sources. We adjusted the
trace element concentrations for the lipid and carbon source
descriptors and other variables (sex and age), if these were
included in the most parsimonious models (Table 2). We then
compared the adjusted element levels with those we reported
previously for the unadjusted levels in the same individuals [3].
We tested the effect of carbon and lipid source variation on
pairwise differences between subpopulations by running a post
hoc Tukey’s honestly significant difference test after and before
adjusting the trace element concentrations for carbon and lipid
source descriptors. After adjusting for carbon and lipid source
descriptors, this means that the trace element concentrations
were adjusted according to all the variables included in the most
parsimonious models (Table 2). Before adjusting for carbon
and lipid source descriptors, this means that the trace element
concentrations were adjusted only to other variables (age and
sex) if these were included in the most parsimonious models
(Table 2). Level of significance was set to a� 0.05.

RESULTS AND DISCUSSION

Regional variation in carbon and lipid sources

The d13C signatures were depleted in the northern and
southern Beaufort Sea, Hudson Bay, and East Greenland
subpopulations compared with the remaining subpopulations
(analysis of variance, F9,111¼ 40, p< 0.001, Table 1). The
d13C values are enriched going from terrestrial/freshwater
organic matter to pelagic phytoplankton to ice algae and
benthos [25]. The depleted d13C signatures in the polar bears
from the Beaufort Sea and Hudson Bay may originate from
input of terrestrial organic carbon by rivers including the
Mackenzie River, running into the Beaufort Sea, and several
rivers feeding the Hudson Bay basin [39,40]. Although Hudson
Bay polar bears spend prolonged seasonal periods on land,

incorporation of terrestrial-based carbon from feeding on ber-
ries has been suggested to be a minor part of their carbon bulk
[41]. The depleted d13C values in East Greenland polar bears
may be related to the phenomenon that freshwater from the
Arctic Ocean originating mainly from Russian and Canadian
river runoff is strongly confined nearly to the East Greenland
coast, as most of the polar sea ice is transported southward along
the East Greenland shores, where it melts as it meets with
warmer ocean currents [42].

Major FAs included 20:1n-9, 20:5n-3, 22:5n-3, 22:6n-3, and
18:2n-6 as presented in detail by McKinney et al. [23]. These
FAs originate from pelagic herbivorous plankton and phyto-
plankton such as Calanus copepods, diatoms, dinoflagellates,
and Phaeosystis pouchetii [28]. The FA composition in polar
bears thus suggests that polar bear diet is coupled mainly to the
pelagic marine food web, which is in agreement with previous
carbon SI estimations reported by Hobson et al. [43]. The first
axis explaining 64% of the FA variation distinguished mostly
between 20:1n-9 and 22:1n-9, and 20:5n-3 (Fig. 2A). Corre-
spondence analysis indicated that FA composition differed
among the polar bear subpopulations, whereas the variation
between seasons and sexes was minor (Fig. 2B–D). This is
similar to previous results reported byMcKinney et al. [23]. The
first axis separated Hudson Bay and Chukchi Sea polar bears
mainly from the other subpopulations, and showed a strong
correlation with latitude. The bears from lower latitude Hudson
Bay and Chukchi Sea populations had lower proportions of
20:1n-9 and 22:1n-9 compared with the polar bears from higher
latitudes. The FAs 20:1n-9 and 22:1n-9 are biosynthesized by
Calanus copepods and used as specific markers for this taxon
[28], which is the major zooplankton taxa in the high Arctic
[44,45]. Our results suggest that Calanus copepods are propor-
tionally greater in the polar bear food webs in higher latitudes
compared with those from lower latitudes. This is in accordance
with differences reported elsewhere in zooplankton composi-
tion among Hudson Bay, Chukchi Sea, and the remaining areas
[44–47].

Relationships between carbon and lipid sources
and trace elements

Concentrations of Hg, Se, As, and Cd were related to FAs,
d13C, or both based on the ordination plot derived from the RDA
(Fig. 3A). Plotting sample scores revealed that the relationships
between trace elements were mainly related to subpopulation
differences (Fig. 3B), whereas sex and season had minor
influence on these relationships (Fig. 3C,D).

Hg concentrations were negatively related to d13C (Fig. 3A;
b¼�0.27 [�0.45, �0.09]), which is in accordance with a
previous report on Hg in polar bears from western Hudson
Bay and southern Beaufort Sea [22]. As mentioned earlier,
depleted d13C signatures may originate from terrestrial organic
carbon transported by rivers. Riverine transport is also a major
source of Hg to the Arctic Ocean [48]. Thus, polar bear food
webs rich in river-exported carbon may lead to elevated total Hg
concentrations in polar bears. Concentrations of total Hg also
showed a positive relationship with FAind1 (Fig. 3A; b¼ 1.5
[0.9, 2]), which was positively loaded with the Calanus FA
marker 20:1n-9 (Fig. 2A). This raises the question of whether
food webs rich in Calanus accumulate more Hg compared with
food webs deficient in Calanus. Previous studies on beluga
whales found positive correlations between total Hg concen-
trations in liver and muscle and long chain monounsaturated
fatty acids (20:1n-7, 20:1n-9, 22:1n-9, and 22:1n-11) [32],
which are biosynthesized in Calanus-copepods [28]. To our

Table 2. Explanatory variables including degrees of freedom (df) and r2 for
the most parsimonious linear models for loge-transformed trace element

concentrations

d13C FAind1 FAind2 Age df r2

log(As) X X X 3,115 0.29
log(Cd) X 1,118 0.09
log(Hg) X X X X 4,115 0.31
log(Se) X X X X 4,115 0.28

FAind¼ fatty acid index.
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knowledge, there is no comparative literature about Hg uptake
by Calanus compared with the major zooplankton taxa from the
subarctic. Calanus may be exposed to relatively high Hg levels
due to its foraging ecology. The key Calanus-copepod in Arctic
shelf seas, C. glacialis, times its foraging to the ice algal bloom
in April, whereas their offspring feeds on the phytoplankton
bloom following the sea-ice break-up [49]. Interestingly, Hg
concentrations in sea-ice brines are highest in April and
decrease with the progressing melting season when melt water
flushes the brine into the underlying seawater [50]. Concen-
trations of Hg were positively related to age (b¼ 0.0478 [0.016,
0.080], which is in accordance with previous studies on polar
bears [4,17].

Strong positive correlations of Se and As were found with
total Hg (r¼ 0.97 [0.95, 0.98] and 0.80 [0.72, 0.85], respec-
tively), which were thus positively related to FAind1 and
negatively to d13C. Concentrations of Se were also positively
related to age. Strong correlations between Hg and Se have been
reported by numerous wildlife studies, which are probably
related to a detoxifying effect of Se on Hg [12]. Mercury forms
the equimolar inert tiaminite Se complex Hg:Se [51], and the
molar ratio of Hg:Se varied between 0.8 to 1.6 in the present
polar bears, which is at a similar range as previously observed in
polar bears [6,52]. The underlying reason for the positive
correlation of As with either Hg or Se is not clear. First,
biomagnification potency of As has not been demonstrated in
contrast to Hg [53–56]. Second, although arsenite (As3þ) and Se
may interact by forming an equimolar complex with glutathione
[51], the major As form in marine mammals (seals) and birds is
arsenobetaine [57], which to our knowledge is not known to
interact with Se. However, different forms of As have not been
investigated in polar bears, and further research is warranted to
investigate the underlying reason for strong correlations of As
with Hg and Se.

Concentrations of Cd were positively related to FAind2
(Fig. 3A; b¼ 1.5 [0.6, 2.3]), which loaded negatively with

Fig. 2. Ordination plots from correspondence analysis based onmass percentage of total dietary fatty acids (FAs) in polar bear subpopulations (A). Sample scores
are groupedby subpopulation (B), season (C), and sex (D). Thefirst and second axes explained64 and14%of the total variation, respectively. Latitude andd13Care
shown as supplementary variables. See Figure 1 for abbreviation definitions.

Fig. 3. Ordination plots from redundancy analysis (RDA) based on
covariance matrix of log-transformed trace element concentrations in the
liver of polar bears. The relationships are shown between response variables
(trace element concentrations) and explanatory variables (chemical tracers
and age) (A). The sample scores are grouped by subpopulation (B), sex (C),
and season (D). The first linear combination of the explanatory variables
explained 33% of the response variables and the second, 16%. The first axis
explained 89% of the variation and second axis, 8.7%. See Figure 1 for
abbreviation definitions.
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FA 20:4n-6 (Fig. 2A). This suggests enrichment of Cd from
near-shore to the pelagic environment, because 20:4n-6 is
synthesized in macro-algae growing in shallow waters
(<12m) [58]. This is in agreement with increasing Cd levels
from the inner fjord system toward the open sea in, for example,
the Greenland environment [59]. In the case of Cu, Mn, Rb, and
Zn, these were not related to carbon or lipid source descriptors
(Fig. 3A). Thus, Cu, Mn, and Zn are all essential elements, and
their uptake is naturally regulated by organisms, whereas the
role of Rb as a micronutrient has been discussed [60].

Influence of carbon and lipid sources on subpopulation differences
in trace element concentrations

When adjusted for carbon and lipid sources as measured by
d13C and FA tracers, total Hg concentrations were significantly
different from concentrations that were not adjusted (Fig. 4).
Mean total Hg concentrations were higher in southern and
western Hudson Bay polar bears and lower in southern and
northern Beaufort Sea subpopulations when adjusted for
d13C and FA tracers compared with unadjusted concentrations.
We recently reported that total Hg concentrations in polar bears
from northern and southern Beaufort Sea were higher than in
any other subpopulations except Lancaster/Jones Sound and the
Gulf of Boothia, whereas total Hg concentrations were lower in
southern and western Hudson Bay polar bears compared with
any other subpopulation except those of the Davis Strait and
Chukchi Sea [3]. The subpopulation differences of concentra-
tions of total Hg adjusted for carbon and lipid sources were less
pronounced than unadjusted trends among these subpopula-
tions. Adjusted total Hg concentrations in southern and northern
Beaufort Sea polar bears were generally not higher compared
with other subpopulations (0.12< p< 1; p¼ 0.06 for northern
Beaufort Sea–East Greenland; southern Beaufort Sea–southern
Hudson Bay, p¼ 0.001), except for Chukchi Sea (p< 0.001).
Total Hg concentrations adjusted for carbon and lipid sources in
polar bears from western Hudson Bay were similar to all the
subpopulations (0.15< p< 1) and higher than in Chukchi Sea

polar bears (p¼ 0.042). Adjusted total Hg concentrations
for the southern Hudson Bay subpopulation were still lower
compared with polar bears from northern Beaufort Sea and
Lancaster/Jones Sound (p� 0.001). Because Se and total Hg
concentrations were strongly correlated, concentrations of Se
adjusted for carbon and lipid sources were less pronounced
compared with unadjusted trends among these subpopulations
(Fig. 4). Concentrations of As adjusted for carbon and lipid
sources were, in general, similar between subpopulations
(p> 0.095; East Greenland–northern Beaufort Sea p¼ 0.024).
However, subpopulation differences were observed in the
unadjusted As concentrations [3] (Fig. 4). Prior to adjustments
for lipid source, concentrations of Cd in polar bears generally
increased from east to west [3]. However, after adjustments, this
trend was less pronounced (Fig. 4).

Our results suggest that differences in Hg, Se, As, and Cd
concentrations among polar bear subpopulations are partly
explained by variation in carbon and lipid sources. Low con-
centrations of total Hg adjusted for carbon and lipid sources in
Chukchi Sea polar bears may be related to Hg concentrations
in water. Dissolved gaseous Hg in surface waters from the
Chukchi–Bering Sea has also been reported to be low compared
with the remaining Arctic [61]. The Chukchi–Bering Sea is
influenced by inflow of water from the Pacific Ocean, where
evasion of gaseous mercury is not blocked by ice cover [62].

Confounding factors—methylated Hg species in water column
and food web length

A recent study comparing total Hg levels in the hair of polar
bears from western Hudson Bay and the southern Beaufort Sea
concluded that the differences in total Hg levels between these
two subpopulations may be related to both the length of the food
web and pelagic concentrations of MeHg concentrations [22].
Concentrations of MeHg in the water column vary between the
Canadian Arctic archipelago and Hudson Bay, whereas total Hg
concentrations are similar in the different areas within the
Canadian Arctic and sub-Arctic [22,63]. Monomethylated Hg

Fig. 4. Geometricmean concentrations (mg/gwetwt� 95%confidence intervals) of totalHg, Se,As, andCd in liver of polar bears from10 subpopulations before
[3] and after adjusting for lipid and carbon sources (see Table 2 for details). See Figure 1 for abbreviation definitions.

2744 Environ. Toxicol. Chem. 31, 2012 H. Routti et al.



is the toxic form of Hg accumulating in the food web, whereas
elemental Hg has poor bioaccumulation potential [64].
Although our results suggest that total Hg variation among
polar bear subpopulations is mainly explained by food web
differences, the results for the Canadian subpopulations may be
partly confounded by regional variation in MeHg species in the
water column [22,63]. We had reported that the highest con-
centrations of total Hg (corrected for sex and age) were in polar
bears from the Beaufort Sea, Lancaster Sound, and Gulf of
Boothia, followed by the Baffin Bay and Davis Strait; Hudson
Bay bears had the lowest Hg concentrations [3]. Similarly,
concentrations of MeHg in mid-depth and deep water column
were reported to be highest in the southern Beaufort Sea and
Lancaster Sound and lower for Davis Strait to Hudson Bay
[22,63]. However, the geographical differences in MeHg con-
centrations in the water column were smaller compared with
differences that we observed among the polar bear subpopula-
tions. Furthermore, the Beaufort Sea and Baffin Bay were
shown not to have different MeHg concentrations in the water
column [22,63] as they did for total Hg concentrations in polar
bears. Therefore, the difference that we presently observed in
total Hg concentrations between Beaufort Sea and Baffin Bay
subpopulations could be explained by differences in carbon and
lipid sources between the Beaufort Sea and Baffin Bay.

Trophic biomagnification of Hg has been reported in both
polar bears [22,65] and marine food webs [56,66]. We pre-
viously reported that d15N values varied among the polar bear
subpopulations [23]. As part of the present study, we found that
the d15N values were positively correlated with the concen-
trations of total Hg, Se, and As (Supplemental Data, Fig. S1).
This finding suggests that regional differences in polar bear food
web length play a role in explaining subpopulation differences
in trace element concentrations. However, the trophic baseline
of d15N values in Arctic marine food webs may vary signifi-
cantly between geographical regions [67,68]. Thus, the differ-
ences in d15N values among polar bear subpopulations do not
necessary reflect their trophic position in the food web. We
recommend that future studies should investigate the role of
the whole food web length in subpopulation variation of trace
element concentrations in polar bears. This will require a
thorough investigation of d15N values at lower trophic levels
to properly adjust polar d15N values to possible variations in
d15N baseline.

CONCLUSIONS

The present study demonstrates the importance of including
information on carbon and lipid sources when interpreting the
spatial trends of certain trace elements in polar bears. Sub-
population differences are partly explained by variation in
carbon and lipid sources, but MeHg in the water column and
food web length may also play an important role in total Hg
concentrations in apex predators. It has been proposed that trace
element concentrations in arctic apex predators may change
during the next decades, as Hg and Cd emissions are expected to
increase due to the increasing use of coal in Asia and worldwide
[69,70]. Additionally, changing climate may be affecting the
natural cycles and long-range transport of these elements
[62,71], as well as access, abundance, and distribution of polar
bear prey. Frequent monitoring of both polar bear food web
structure and exposure to trace elements is thus important to
detect possible and rapid changes.

SUPPLEMENTAL DATA

In the Supplemental Information section, comprehensive
details are given on methods for stable isotopes, fatty acids,
and total Hg and other elements under study. Supplemental
Figure S1 shows the relationships between liver total Hg, Se,
and As, and muscle stable nitrogen isotope (d15N) values in
polar bears from the 10 subpopulations. (37 KB DOC).
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